翻訳と辞書
Words near each other
・ Dirección General de Aviación Civil (Spain)
・ Dirección General de Inteligencia
・ Dirección General de Policía
・ Dirección Nacional de Aeronautica Civil
・ Dira Betachtonim
・ Dira clytus
・ Dira jansei
・ Dira oxylus
・ Dira Paes
・ Dira Sugandi
・ Dira swanepoeli
・ Dirac (disambiguation)
・ Dirac (software)
・ Dirac (video compression format)
・ Dirac adjoint
Dirac algebra
・ Dirac bracket
・ Dirac comb
・ Dirac delta function
・ Dirac equation
・ Dirac equation in curved spacetime
・ Dirac equation in the algebra of physical space
・ Dirac fermion
・ Dirac hole theory
・ Dirac large numbers hypothesis
・ Dirac measure
・ Dirac operator
・ Dirac Prize
・ Dirac sea
・ Dirac spectrum


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dirac algebra : ウィキペディア英語版
Dirac algebra

In mathematical physics, the Dirac algebra is the Clifford algebra ''C''ℓ1,3(C). This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin-½ particles with a matrix representation with the Dirac gamma matrices, which represent the generators of the algebra.
The gamma elements have the defining relation
: \displaystyle\ = \gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2 \eta^ \bold
where \eta^ \, are the components of the Minkowski metric with signature (+ − − −) and \bold is the identity element of the algebra (the identity matrix in the case of a matrix representation). This allows the definition of a scalar product
:\displaystyle \langle a , b \rangle = \sum_ \eta^ a_ b^\dagger_\nu
where
:\, a = \sum_ a_ \gamma^ and \, b = \sum_ b_ \gamma^ .

==Derivation starting from the Dirac and Klein–Gordon equation==

The defining form of the gamma elements can be derived if one assumes the covariant form of the Dirac equation:
:-i \hbar \gamma^\mu \partial_\mu \psi + m c \psi = 0 \,.
and the Klein–Gordon equation:
: - \partial_t^2 \psi + \nabla^2 \psi = m^2 \psi
to be given, and requires that these equations lead to consistent results.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dirac algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.